Mixture Proportion Estimation

Clay Scott

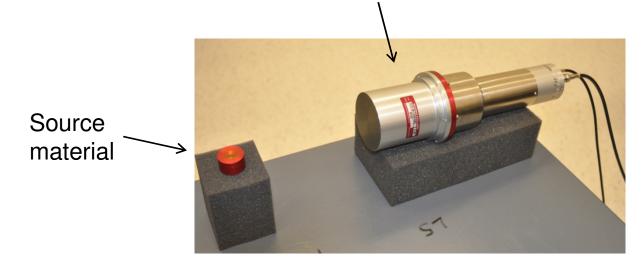
EECS and Statistics University of Michigan

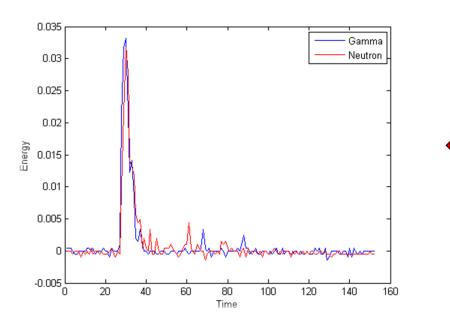
Nuclear Nonproliferation

- Radioactive sources are characterized by distribution of neutron energies
- Organic scintillation detectors: prominent technology for neutron detection

Collaborators: Sara Pozzi, Marek Flaska @ UM Nuclear Engineering

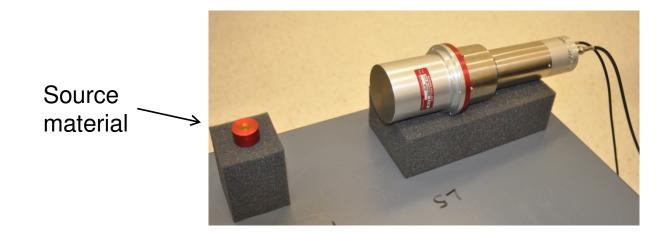
Organic Scintillation Detector





- Detects both neutrons and gamma rays
- Need to classify neutrons and gamma rays

Nuclear Particle Classification



- $X \in \mathbb{R}^d$, d = signal length
- Training data:

 $X_1, \ldots, X_m \stackrel{iid}{\sim} P_0$ (from gamma ray source, e.g. Na-22) $X_{m+1}, \ldots, X_{m+n} \stackrel{iid}{\sim} P_1$ (from neutron source, e.g. Cf-252)

• $P_0, P_1 =$ class-conditional distributions; don't want to model

Reality: No Pure Neutron Sources

• Contamination model for training data:

$$X_1, \dots, X_m \stackrel{iid}{\sim} P_0$$
$$X_{m+1}, \dots, X_{m+n} \stackrel{iid}{\sim} \tilde{P}_1 = (1-\pi)P_1 + \pi P_0$$

- π unknown
- P_0 , P_1 may have overlapping supports (nonseparable problem)
- Nonparametric approach desired
- Problem known as "learning with positive and unlabeled examples" (LPUE)

Measuring Performance

• Classifier:

$$f: \mathbb{R}^d \to \{0, 1\}$$

• False positive/negative rates:

$$R_0(f) := P_0(f(X) = 1)$$

$$R_1(f) := P_1(f(X) = 0)$$

$$\tilde{R}_1(f) := \tilde{P}_1(f(X) = 0)$$

• Estimating false negative rate:

$$\tilde{P}_{1} = (1 - \pi)P_{1} + \pi P_{0}$$

$$\Downarrow$$

$$\tilde{R}_{1}(f) = (1 - \pi)R_{1}(f) + \pi(1 - R_{0}(f))$$

$$\Downarrow$$

$$R_{1}(f) = \frac{\tilde{R}_{1}(f) - \pi(1 - R_{0}(f))}{1 - \pi}$$

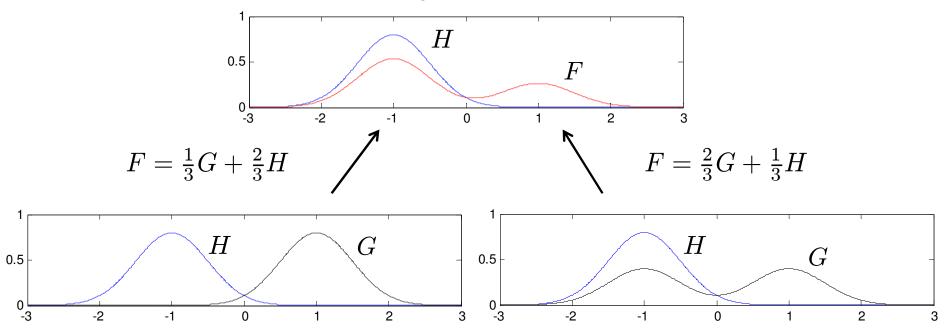
• Suffices to estimate π

Mixture Proportion Estimation

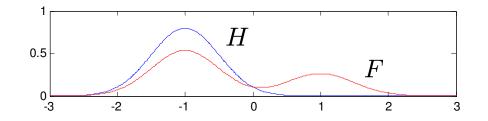
• Consider

$$Z_1, \dots, Z_m \stackrel{iid}{\sim} H$$
$$Z_{m+1}, \dots, Z_{m+n} \stackrel{iid}{\sim} F = (1-\nu)G + \nu H$$

- Need consistent estimate of ν
- Note: ν not identifiable in general



Mixture Proportion Estimation



• Given two distributions F, H, define

 $\nu^*(F, H) = \max\{\alpha \in [0, 1] : \exists G' \text{ s.t. } F = (1 - \alpha)G' + \alpha H\}$

• Blanchard, Lee, S. (2010) give universally consistent estimator

$$\widehat{\nu}(\{Z_i\}_{i=1}^m, \{Z_i\}_{i=m+1}^{m+n}) \xrightarrow{a.s.} \nu^*(F, H)$$

• When is $\nu = \nu^*(F, H)$?

Identifiability Condition

• If

$$F = (1 - \nu)G + \nu H$$

then

$$\nu = \nu^*(F, H) \Longleftrightarrow \nu^*(G, H) = 0$$

• Apply to LPUE

$$X_1, \dots, X_m \stackrel{iid}{\sim} P_0$$
$$X_{m+1}, \dots, X_{m+n} \stackrel{iid}{\sim} \tilde{P}_1 = (1-\pi)P_1 + \pi P_0$$

• Need

$$\nu^*(P_1, P_0) = 0$$

In words: Can't write P_1 as a (nontrivial) mixture of P_0 and some other distribution

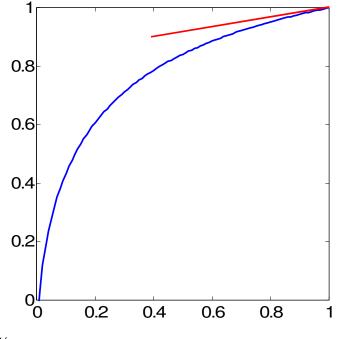
Mixture Proportion Estimation

- Assume F, H have densities f and h
- Easy to show:

$$\nu^*(F,H) = \operatorname{ess\,inf}_{x:h(x)>0} \frac{f(x)}{h(x)}$$

• Consider ROC of LRT

$$\frac{f(x)}{h(x)} \gtrless \gamma$$



Slope of ROC corresponding to threshold γ is γ

• Combine previous two facts:

 $\nu^*(F, H) =$ slope of ROC of f/h at right end-point

• Remark: $1 - \nu^*(F, H) =$ "separation distance" between F and H

Classification with Label Noise

• Contaminated training data:

$$X_1, \dots, X_m \stackrel{iid}{\sim} \tilde{P}_0 = (1 - \pi_0)P_0 + \pi_0 P_1$$
$$X_{m+1}, \dots, X_{m+n} \stackrel{iid}{\sim} \tilde{P}_1 = (1 - \pi_1)P_1 + \pi_1 P_0$$

- P_0, P_1 unknown
- P_0, P_1 , may have overlapping supports
- π_0, π_1 unknown
- Asymmetric label noise: $\pi_0 \neq \pi_1$

• **Random** label noise, as opposed to adversarial, or feature-dependent

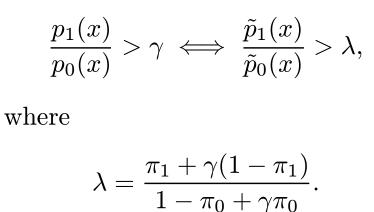
Understanding Label Noise

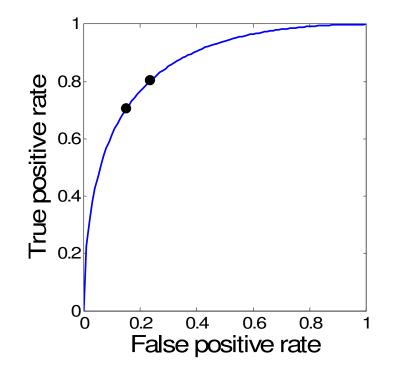
- Assume P_0, P_1 have densities $p_0(x), p_1(x)$
- Then \tilde{P}_0, \tilde{P}_1 have densities

$$\tilde{p}_0(x) = (1 - \pi_0)p_0(x) + \pi_0 p_1(x)$$

$$\tilde{p}_1(x) = (1 - \pi_1)p_1(x) + \pi_1 p_0(x)$$

• Simple algebra:





Modified Contamination Model

• Recall contaminaton model:

$$X_1, \dots, X_m \stackrel{iid}{\sim} \tilde{P}_0 = (1 - \pi_0)P_0 + \pi_0 P_1$$
$$X_{m+1}, \dots, X_{m+n} \stackrel{iid}{\sim} \tilde{P}_1 = (1 - \pi_1)P_1 + \pi_1 P_0$$

• **Proposition:** If $\pi_0 + \pi_1 < 1$ holds and $P_0 \neq P_1$, then

$$\tilde{P}_0 = (1 - \tilde{\pi}_0) P_0 + \tilde{\pi}_0 \tilde{P}_1 \tilde{P}_1 = (1 - \tilde{\pi}_1) P_1 + \tilde{\pi}_1 \tilde{P}_0$$

where

$$\tilde{\pi}_0 = \frac{\pi_0}{1 - \pi_1}, \quad \tilde{\pi}_1 = \frac{\pi_1}{1 - \pi_0}$$

Error Estimation

• Focus on $R_0(f)$

$$\tilde{P}_{0} = (1 - \tilde{\pi}_{0})P_{0} + \tilde{\pi}_{0}\tilde{P}_{1}$$

$$\Downarrow$$

$$\tilde{R}_{0}(f) = (1 - \tilde{\pi}_{0})R_{0}(f) + \tilde{\pi}_{0}(1 - \tilde{R}_{1}(f))$$

$$\Downarrow$$

$$R_{0}(f) = \frac{\tilde{R}_{0}(f) - \tilde{\pi}_{0}(1 - \tilde{R}_{1}(f))}{1 - \tilde{\pi}_{0}}$$

- Can estimate $\tilde{R}_0(f), \tilde{R}_1(f)$ accurately from data
- Suffices to estimate $\tilde{\pi}_0$

MPE for Label Noise

• Modified contamination model

$$X_1, \dots, X_m \stackrel{iid}{\sim} \tilde{P}_0 = (1 - \tilde{\pi}_0) P_0 + \tilde{\pi}_0 \tilde{P}_1$$
$$X_{m+1}, \dots, X_{m+n} \stackrel{iid}{\sim} \tilde{P}_1 = (1 - \tilde{\pi}_1) P_1 + \tilde{\pi}_1 \tilde{P}_0$$

- Need consistent estimates of $\tilde{\pi}_0, \tilde{\pi}_1 \longrightarrow \text{MPE}$
- Identifiability: Need

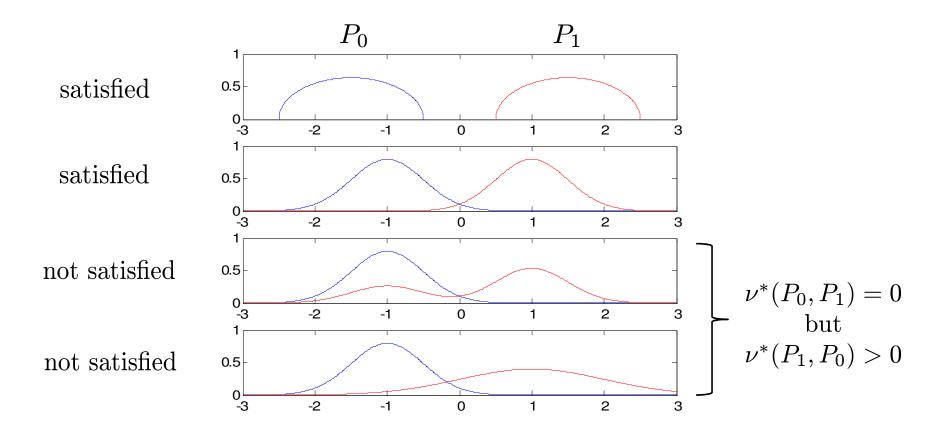
$$\nu^*(P_0, \tilde{P}_1) = 0$$
 and $\nu^*(P_1, \tilde{P}_0) = 0$

or equivalently (it can be shown)

$$\nu^*(P_0, P_1) = 0$$
 and $\nu^*(P_1, P_0) = 0$

Identifiability Condition

 $\nu^*(P_0, P_1) = 0$ and $\nu^*(P_1, P_0) = 0$



Class Probability Estimation

• Assume joint distribution on (X, Y)

$$(X_i, Y_i) \stackrel{iid}{\sim} P_{XY}, \qquad Y_i \in \{0, 1\}$$

• Posterior probability

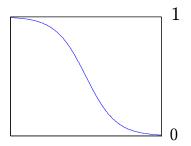
$$\eta(x) := P_{XY}(Y = 1 | X = x)$$

- Goal: Estimate η from training data
- Standard approach: logistic regression

$$\widehat{\eta}(x) = \frac{1}{1 + \exp(w^T x + b)}$$

$$\eta_{\max} := \sup_{x} \eta(x), \qquad \eta_{\min} := \inf_{x} \eta(x)$$

• Fact: label noise identifiability condition holds $\iff \eta_{\text{max}} = 1 \text{ and } \eta_{\text{min}} = 0$



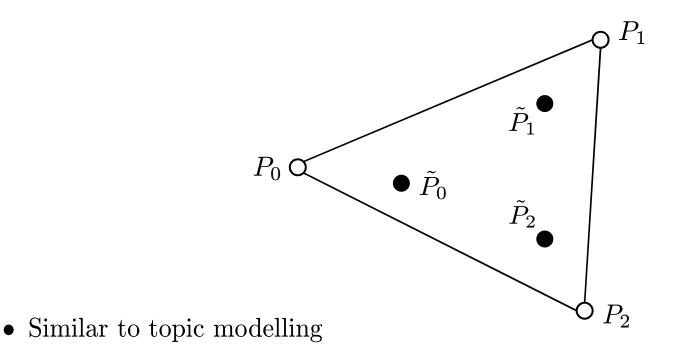
Multiclass Label Noise

• Training distributions:

$$\tilde{P}_0 = (1 - \pi_{01} - \pi_{02})P_0 + \pi_{01}P_1 + \pi_{02}P_2$$

$$\tilde{P}_1 = \pi_{10}P_0 + (1 - \pi_{10} - \pi_{12})P_1 + \pi_{12}P_2$$

$$\tilde{P}_2 = \pi_{20}P_0 + \pi_{21}P_1 + (1 - \pi_{20} - \pi_{21})P_2$$



Classification with Unknown Class Skew

• Binary classification training data

$$X_1, \dots, X_m \stackrel{iid}{\sim} P_0$$
$$X_{m+1}, \dots, X_{m+n} \stackrel{iid}{\sim} P_1$$

• Test data:

$$Z_1, \ldots, Z_k \stackrel{iid}{\sim} P_{\text{test}} = \pi P_0 + (1 - \pi) P_1$$

• π unknown

- π needs to be known for several performance measures (probability of error, precision)
- MPE: If $\nu^*(P_1, P_0) = 0$ then $\pi = \nu^*(P_{\text{test}}, P_0)$

$$\rightarrow \widehat{\pi} = \widehat{\nu}(\{X_i\}_{i=1}^m, \{Z_i\}_{i=1}^k)$$

Classification with Reject Option

• Binary classification training data

$$X_1, \dots, X_m \stackrel{iid}{\sim} P_0$$
$$X_{m+1}, \dots, X_{m+n} \stackrel{iid}{\sim} P_1$$

• Test data:

$$Z_1, \ldots, Z_k \overset{iid}{\sim} P_{\text{test}} = \pi_0 P_0 + \pi_1 P_1 + (1 - \pi_0 - \pi_1) P_2$$

- P_2 = distribution of everything else (reject)
- π_0, π_1 unknown
- Use MPE (twice) to estimate π_0, π_1 \implies estimate probability of class 2 error \implies design a classifier

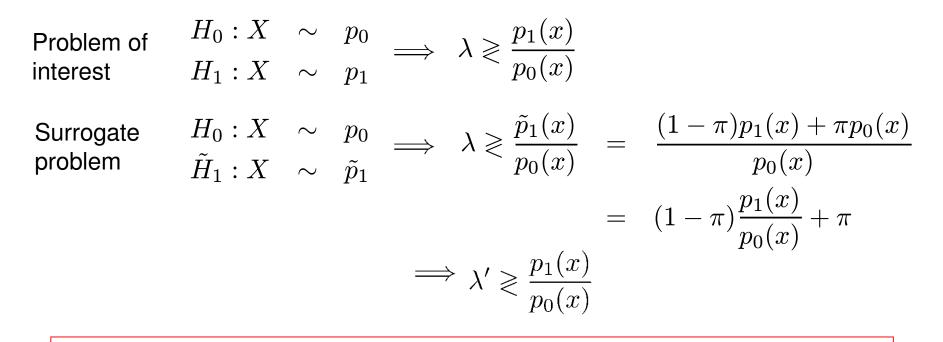
Conclusion

- Mixture proportion estimation can be used to solve
 - $\circ~$ Learning with positive and unlabeled examples
 - $\circ~$ Classification with label noise
 - $\circ~$ Multiclass label noise
 - $\circ~$ Classification with unknown class skew
 - $\circ~$ Classification with reject option
 - Classification with partial labels
 - Change-point detection
 - Two-sample problem
 - o ???
- MPE also connected to
 - Class-probability estimation
 - Multiple testing

Collaborators

- Gilles Blanchard
- Gregory Handy, Tyler Sanderson
- Marek Flaska, Sara Pozzi

Suppose Densities are Known



Surrogate LR is monotone function of optimal test statistic ----- UMP test

- Data-based approach: Classification with prescribed false positive rate
- Challenges: Criteria other than Neyman-Pearson; estimating false negative rate