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Nuclear Nonproliferation

• Radioactive sources are 

characterized by distribution of 

neutron energies

• Organic scintillation detectors: 

prominent technology for 

neutron detection

Collaborators: Sara Pozzi, Marek

Flaska @ UM Nuclear Engineering



Organic Scintillation Detector

Source 

material

• Detects both neutrons 

and gamma rays

• Need to classify neutrons 

and gamma rays



Nuclear Particle Classification

Source 

material

• X ∈ Rd, d = signal length

• Training data:

X1, . . . , Xm
iid
∼ P0 (from gamma ray source, e.g. Na-22)

Xm+1, . . . , Xm+n
iid
∼ P1 (from neutron source, e.g. Cf-252)

• P0, P1 = class-conditional distributions; don’t want to model



Reality: No Pure Neutron Sources

• Contamination model for training data:

X1, . . . , Xm
iid
∼ P0

Xm+1, . . . , Xm+n
iid
∼ P̃1 = (1− π)P1 + πP0

• π unknown

• P0, P1 may have overlapping supports (nonseparable problem)

• Nonparametric approach desired

• Problem known as “learning with positive and unlabeled examples”
(LPUE)



Measuring Performance
• Classifier:

f : Rd → {0, 1}

• False positive/negative rates:

R0(f) := P0(f(X) = 1)

R1(f) := P1(f(X) = 0)

R̃1(f) := P̃1(f(X) = 0)

• Estimating false negative rate:

P̃1 = (1− π)P1 + πP0
⇓

R̃1(f) = (1− π)R1(f) + π(1−R0(f))
⇓

R1(f) = R̃1(f)−π(1−R0(f))
1−π

• Suffices to estimate π
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Mixture Proportion Estimation

• Need consistent estimate of ν

• Note: ν not identifiable in general

• Consider

Z1, . . . , Zm
iid
∼ H

Zm+1, . . . , Zm+n
iid
∼ F = (1− ν)G+ νH

H

H
F

GH G

F = 1
3G+ 2

3H F = 2
3G+ 1

3H
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Mixture Proportion Estimation

• Given two distributions F,H, define

ν∗(F,H) = max{α ∈ [0, 1] : ∃G′ s.t. F = (1− α)G′ + αH}

• Blanchard, Lee, S. (2010) give universally consistent estimator

ν̂({Zi}
m
i=1, {Zi}

m+n
i=m+1)

a.s.
−→ ν∗(F,H)

• When is ν = ν∗(F,H)?

H
F



Identifiability Condition
• If

F = (1− ν)G+ νH

then
ν = ν∗(F,H) ⇐⇒ ν∗(G,H) = 0

• Apply to LPUE

X1, . . . , Xm
iid
∼ P0

Xm+1, . . . , Xm+n
iid
∼ P̃1 = (1− π)P1 + πP0

• Need
ν∗(P1, P0) = 0

In words: Can’t write P1 as a (nontrivial) mixture of
P0 and some other distribution



Mixture Proportion Estimation
• Assume F,H have densities f and h

• Easy to show:

ν∗(F,H) = ess inf
x:h(x)>0

f(x)

h(x)

• Consider ROC of LRT

f(x)

h(x)
≷ γ

Slope of ROC corresponding to threshold γ
is γ
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• Combine previous two facts:

ν∗(F,H) = slope of ROC of f/h at right end-point

• Remark: 1− ν∗(F,H) = “separation distance” between F and H



Classification with Label Noise

• Contaminated training data:

X1, . . . , Xm
iid
∼ P̃0 = (1− π0)P0 + π0P1

Xm+1, . . . , Xm+n
iid
∼ P̃1 = (1− π1)P1 + π1P0

• P0, P1 unknown

• P0, P1, may have overlapping supports

• π0, π1 unknown

• Asymmetric label noise: π0 �= π1

• Random label noise, as opposed to adversarial, or feature-dependent



Understanding Label Noise

• Assume P0, P1 have densities p0(x), p1(x)

• Then P̃0, P̃1 have densities

p̃0(x) = (1− π0)p0(x) + π0p1(x)

p̃1(x) = (1− π1)p1(x) + π1p0(x)
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False positive rate

• Simple algebra:

p1(x)

p0(x)
> γ ⇐⇒

p̃1(x)

p̃0(x)
> λ,

where

λ =
π1 + γ(1− π1)

1− π0 + γπ0
.



Modified Contamination Model

• Recall contaminaton model:

X1, . . . , Xm
iid
∼ P̃0 = (1− π0)P0 + π0P1

Xm+1, . . . , Xm+n
iid
∼ P̃1 = (1− π1)P1 + π1P0

• Proposition: If π0 + π1 < 1 holds and P0 �= P1, then

P̃0 = (1− π̃0)P0 + π̃0P̃1

P̃1 = (1− π̃1)P1 + π̃1P̃0

where
π̃0 =

π0
1− π1

, π̃1 =
π1

1− π0



Error Estimation
• Focus on R0(f)

P̃0 = (1− π̃0)P0 + π̃0P̃1
⇓

R̃0(f) = (1− π̃0)R0(f) + π̃0(1− R̃1(f))
⇓

R0(f) = R̃0(f)−π̃0(1−R̃1(f))
1−π̃0

• Can estimate R̃0(f), R̃1(f) accurately from data

• Suffices to estimate π̃0



MPE for Label Noise

• Modified contamination model

X1, . . . , Xm
iid
∼ P̃0 = (1− π̃0)P0 + π̃0P̃1

Xm+1, . . . , Xm+n
iid
∼ P̃1 = (1− π̃1)P1 + π̃1P̃0

• Need consistent estimates of π̃0, π̃1 MPE

• Identifiability: Need

ν∗(P0, P̃1) = 0 and ν∗(P1, P̃0) = 0

or equivalently (it can be shown)

ν∗(P0, P1) = 0 and ν∗(P1, P0) = 0



Identifiability Condition

ν∗(P0, P1) = 0 and ν∗(P1, P0) = 0
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P0 P1

satisfied

not satisfied
ν∗(P0, P1) = 0

but
ν∗(P1, P0) > 0

satisfied

not satisfied



Class Probability Estimation
• Assume joint distribution on (X, Y )

(Xi, Yi)
iid
∼ PXY , Yi ∈ {0, 1}

• Posterior probability

η(x) := PXY (Y = 1 |X = x)

• Goal: Estimate η from training data

• Standard approach: logistic regression

η̂(x) =
1

1 + exp(wTx+ b)

• Let

ηmax := sup
x

η(x), ηmin := inf
x
η(x)

• Fact: label noise identifiability condition holds
⇐⇒ ηmax = 1 and ηmin = 0

0

1



Multiclass Label Noise

• Training distributions:

P̃0 = (1− π01 − π02)P0 + π01P1 + π02P2

P̃1 = π10P0 + (1− π10 − π12)P1 + π12P2

P̃2 = π20P0 + π21P1 + (1− π20 − π21)P2

P0

P1

P2

P̃0

P̃1

P̃2

• Similar to topic modelling



Classification with Unknown Class Skew
• Binary classification training data

X1, . . . ,Xm
iid
∼ P0

Xm+1, . . . , Xm+n
iid
∼ P1

• Test data:

Z1, . . . , Zk
iid
∼ Ptest = πP0 + (1− π)P1

• π unknown

• π needs to be known for several performance mea-
sures (probability of error, precision)

• MPE: If ν∗(P1, P0) = 0 then π = ν∗(Ptest, P0)

π̂ = ν̂({Xi}
m
i=1, {Zi}

k
i=1)



Classification with Reject Option
• Binary classification training data

X1, . . . , Xm
iid
∼ P0

Xm+1, . . . , Xm+n
iid
∼ P1

• Test data:

Z1, . . . , Zk
iid
∼ Ptest = π0P0 + π1P1 + (1− π0 − π1)P2

• P2 = distribution of everything else (reject)

• π0, π1 unknown

• Use MPE (twice) to estimate π0, π1
=⇒ estimate probability of class 2 error
=⇒ design a classifier



Conclusion

• Mixture proportion estimation can be used to solve

◦ Learning with positive and unlabeled examples

◦ Classification with label noise

◦ Multiclass label noise

◦ Classification with unknown class skew

◦ Classification with reject option

◦ Classification with partial labels

◦ Change-point detection

◦ Two-sample problem

◦ ???

• MPE also connected to

◦ Class-probability estimation

◦ Multiple testing



• Gilles Blanchard
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H0 : X ∼ p0

H̃1 : X ∼ p̃1

H0 : X ∼ p0

H1 : X ∼ p1
λ ≷

p1(x)

p0(x)
Problem of 

interest

Surrogate 

problem

Surrogate LR is monotone function of optimal test statistic UMP test

Suppose Densities are Known

λ ≷
p̃1(x)

p0(x)
=

(1− π)p1(x) + πp0(x)

p0(x)

= (1− π)
p1(x)

p0(x)
+ π

• Data-based approach: Classification with prescribed false pos-
itive rate

• Challenges: Criteria other than Neyman-Pearson; estimating
false negative rate


