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Correlation mining

The objective of correlation mining is to discover interesting or
unusual patterns of dependency among a large number of variables
(sequences, signals, images, videos).

Related to:

• Pattern mining, anomaly detection, cluster analysis

• Graph analytics, community detection, node/edge analysis

• Gaussian Graphical models (GGM) - Lauritzen 1996

“Big Data” aspects:

• Large numbers of signals, images, videos

• Observed correlations between signals are incomplete and
noisy

• Number of samples � number of objects of interest
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Correlation mining for Internetwork anomaly detection

Patwari, H and Pacholski, ”Manifold learning visualization of network traffic data,” SIGCOMM 2005 5 / 58



Outline Correlation mining Caveats Dependency models CM Theory Experiments Summary References

Correlation mining for SPAM community detection

p = 100, 000, n = 30
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Correlation mining for materials science

p = 1, 000, 000, 000, n = 1000 to 100, 000

Park, Wei, DeGraef, Shah, Simmons and H, “EBSD image segmentation using a physics-based model,” submitted

2013
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Correlation mining for neuroscience

p = 100, n1 = 50, n2 = 50

Xu, Syed and H, “EEG spatial decoding with shrinkage optimized directed information assessment,” ICASSP 2012
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Correlation mining for finance

p = 40, 000, n1 = 60, n2 = 80

Source: “What is behind the fall in cross assets correlation?” J-J Ohana, 30 mars 2011, Riskelia’s blog.

• Left: Average correlation: 0.42, percent of strong relations 33%
• Right: Average correlation: 0.3, percent of strong relations 20%

Hubs of high correlation influence the market. What hubs changed
or persisted in Q4-10 and Q1-11?
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Correlation mining for biology: gene-gene network

p = 24, 000, n = 270

Source: Huang, . . ., and H, PLoS Genetics, 2011

Gene expression correlation graph

Q: What genes are “hubs” in this correlation graph?
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Correlation mining for biology: gene-gene network
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Correlation mining for predictive medicine: bipartite graph

Q: What genes are predictive of certain symptom combinations?
Firouzi, Rajaratnam and H, ”Predictive correlation screening,” AISTATS 2013 12 / 58
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Sample correlation: p = 2 variables n = 50 samples

Sample correlation:

ĉorrX ,Y =

∑n
i=1(Xi − X )(Yi − Y )√∑n

i=1(Xi − X )2
∑n

i=1(Yi − Y )2
∈ [−1, 1]

,

Positive correlation =1 Negative correlation =-1
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Sample correlation for random sequences: p = 2, n = 50

Q: Are the two time sequences Xi and Yj correlated, e.g.
|ĉorrXY | > 0.5?
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Sample correlation for random sequences: p = 2, n = 50

Q: Are the two time sequences Xi and Yj correlated?
A: No. Computed over range i = 1, . . . 50: ĉorrXY = −0.0809
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Sample correlation for random sequences: p = 2, n < 15

Q: Are the two time sequences Xi and Yj correlated?
A: Yes. ĉorrXY > 0.5 over range i = 3, . . . 12 and ĉorrXY < −0.5
over range i = 29, . . . , 42.
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Real-world example: reported correlation divergence

Source: FuturesMag.com www.futuresmag.com/.../Dom%20FEB%2024.JPG
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Correlating a set of p = 20 sequences

Q: Are any pairs of sequences correlated? Are there patterns of
correlation?
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Thresholded (0.5) sample correlation matrix

Apparent patterns emerge after thresholding each pairwise
correlation at ±0.5.
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Associated sample correlation graph

Graph has an edge between node (variable) i and j if ij-th entry of
thresholded correlation is non-zero.

Sequences are actually uncorrelated Gaussian. 21 / 58
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The problem of false discoveries: phase transitions

• Number of discoveries exhibit phase transition phenomenon

• This phenomenon gets worse as p/n increases.

• Example: false discoveries of high correlation for uncorrelated
Gaussian variables
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Random matrix measurement model

Variable 1 Variable 2 . . . Variable p

Sample 1 X11 X12 . . . X1p

Sample 2 X21 X22 . . . X2p
...

...
... . . .

...
Sample n Xn1 Xn2 . . . Xnp

n × p measurement matrix X has i.i.d. elliptically distributed rows

X =

 X11 · · · · · · X1p
...

. . .
. . .

...
Xn1 · · · · · · Xnp

 =

 X1

...
Xn

 = [X1, . . . ,Xp]

Columns of X index variables while rows index i.i.d. samples

p × p covariance (dispersion) matrix associated with each row is
cov(Xi ) = Σ
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Sparse multivariate dependency models

Two types of sparse (ensemble) correlation models:

• Sparse correlation (Σ) graphical models:
• Most correlation are zero, few marginal dependencies
• Examples: M-dependent processes, moving average (MA)

processes

• Sparse inverse-correlation (K = Σ−1) graphical models
• Most inverse covariance entries are zero, few conditional

dependencies
• Examples: Markov random fields, autoregressive (AR)

processes, global latent variables

• Sometimes correlation matrix and its inverse are both sparse
• Often only one of them is sparse

Refs: Meinshausen-Bühlmann (2006), Friedman (2007), Bannerjee
(2008), Wiesel-Eldar-H (2010) .
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Gaussian graphical models - GGM - (Lauritzen 1996)

Multivariate Gaussian model

p(x) =
|K|1/2

(2π)p/2
exp

− 1
2

p∑
i ,j=1

xixj [K]ij


where K = [cov(X)]−1: p × p precision matrix

• G has an edge eij iff [K]ij 6= 0

• Adjacency matrix B of G obtained by thresholding K

B = h(K), h(u) = 1
2 (sgn(|u| − ρ) + 1)

ρ is arbitrary positive threshold
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Banded Gaussian graphical model G

Figure: Left: inverse covariance matrix K. Right: associated graphical
model

Example: Autoregressive (AR) process: Xn+1 = −aXn + Wn for
which X = [X1, . . . ,Xp] satisfies [I− A]X = W and
K = cov−1(X) = σ2

W [I− A][I− A]T .
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Block diagonal Gaussian graphical model G

Figure: Left: inverse covariance matrix K. Right: associated graphical
model

Example: Xn = [Yn,Zn], Yn, Zn independent processes.
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Two coupled block Gaussian graphical model G

Example: Xn = [Yn + Un,Un,Zn + Un], Yn, Zn, Un independent
AR processes.
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Multiscale Gaussian graphical model G
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Spatial graphical model: Poisson random field

Let pt(x , y) be a space-time process satisfying Poisson equation

∇2pt

∇x2
+
∇2pt

∇y2
= W t

where W t = W t(x , y) is driving process.
For small ∆x ,∆y , p satisfies the difference equation:

X t
i ,j =

(X t
i+1,j + X t

i−1,j)∆2y + (X t
i ,j+1 + X t

i ,j−1)∆2x −W t
i ,j∆

2x∆2y

2(∆2x + ∆2y)

In matrix form, as before: [I− A]Xt = Wt and

K = cov−1(Xt) = σ2
W [I− A][I− A]T

A is sparse ”pentadiagonal” matrix.
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Random field generated from Poisson equation

Figure: Poisson random field. Wt = Niso + sin(ω1t)e1 + sin(ω2t)e2

(ω1 = 0.025, ω2 = 0.02599, SNR=0dB).
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Empirical partial correlation map for spatial random field

Figure: Empirical parcorr at various threshold levels. p=600, n=1500
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Empirical correlation map of spatial random field

Figure: Empirical corr at various threshold levels. p=600, n=1500
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Correlation mining: theory

Given

• Number of nodes = p

• Number of samples =n

• Correlation threshold = ρ

• p × p matrix of sample correlations

• Sparse graph assumption: # true edges � p2

Questions

• Can we predict critical phase transition threshold ρc?

• What level of confidence/significance can one have on
discoveries for ρ > ρc?

• Are there ways to predict the number of required samples for
given threshold level and level of statistical significance?
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Relevant work

• Regularized l2 or lF covariance estimation
• Banded covariance model: Bickel-Levina (2008)
• Sparse eigendecomposition model: Johnstone-Lu (2007)
• Stein shrinkage estimator: Ledoit-Wolf (2005),

Chen-Weisel-Eldar-H (2010)

• Gaussian graphical model selection
• l1 regularized GGM: Meinshausen-Bühlmann (2006),

Wiesel-Eldar-H (2010).
• Bayesian estimation: Rajaratnam-Massam-Carvalho (2008)

• Independence testing
• Sphericity test for multivariate Gaussian: Wilks (1935)
• Maximal correlation test: Moran (1980), Eagleson (1983),

Jiang (2004), Zhou (2007), Cai and Jiang (2011)

• Correlation hub screening (H, Rajaratnam 2011, 2012)
• Fixed n, asymptotic in p, covers partial correlation too.
• Discover degree ≥ k hubs ≡ test maximal k-NN correlation.
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Hub screening theory (H and Rajaratnam 2012)

Empirical hub discoveries: For threshold ρ and degree parameter
δ define number Nδ,ρ of vertices in sample partial-correlation graph
with degree di ≥ δ

Nδ,ρ =

p∑
i=1

φδ,i

φδ,i =

{
1, card{j : j 6= i , |Ωij | ≥ ρ} ≥ δ
0, o.w .

Ω = diag(R†)−1/2R†diag(R†)−1/2

is sample partial correlation matrix and R is sample correlation
matrix

R = diag(Σ̂)−1/2Σ̂diag(Σ̂)−1/2
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Asymptotic familywise false-discovery rate

Asymptotic limit on false discoveries: (H and Rajaratnam
2012): Assume that rows of X are i.i.d. with bounded elliptically
contoured density and block sparse covariance (null hypothesis).

Theorem

Let p and ρ = ρp satisfy limp→∞ p1/δ(p − 1)(1− ρ2
p)(n−2)/2 = en,δ.

Then

P(Nδ,ρ > 0)→
{

1− exp(−λδ,ρ,n/2), δ = 1
1− exp(−λδ,ρ,n), δ > 1

.

λδ,ρ,n = p

(
p − 1

δ

)
(P0(ρ, n))δ

P0(ρ, n) = 2B((n − 2)/2, 1/2)

∫ 1

ρ
(1− u2)

n−4
2 du
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Elements of proof

• Z-score representations for sample (partial) correlation (P) R

R = UTU, P = UT [UUT ]−2U, (U = n − 1× p)

• P0(ρ, n): probability that a uniformly distributed vector
Z ∈ Sn−2 falls in cap(r ,U)∩cap(r ,−U) with r =

√
2(1− ρ).

• As p →∞, Nδ,ρ behaves like a Poisson random variable:
P(Nδ,ρ = 0)→ e−λδ,ρ,n

40 / 58



Outline Correlation mining Caveats Dependency models CM Theory Experiments Summary References

Poisson-like convergence rate

Under assumption that

• p1/δ(p − 1)(1− ρ2
p)(n−2)/2 = O(1)

can apply Chen-Stein to obtain bound∣∣∣P(Nδ,ρ = 0)− e−λδ,ρ,n
∣∣∣ ≤ O

(
max

{
p−1/δ, p−1/(n−2),∆p,n,k,δ

})
∆p,n,k,δ is dependency coefficient between δ-nearest-neighbors of
Yi and its p − k furthest neighbors
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Predicted phase transition for false hub discoveries

False discovery probability: P(Nδ,ρ > 0) ≈ 1− exp(−λδ,ρ,n)

p=10 (δ = 1) p=10000

Critical threshold:

ρc =
√

1− cδ,n(p − 1)−2δ/δ(n−2)−2
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Predicted phase transition for false hub discoveries

False discovery probability: P(Nδ,ρ > 0) ≈ 1− exp(−λδ,ρ,n)

p=10 (δ = 1) p=10000

Critical threshold:

ρc =
√

1− cδ,n(p − 1)−2δ/δ(n−2)−2
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Phase transitions as function of δ, p
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Experimental Design Table (EDT): mining connected nodes

n�α 0.010 0.025 0.050 0.075 0.100

10 0.99\0.99 0.99\0.99 0.99\0.99 0.99\0.99 0.99\0.99

15 0.96\0.96 0.96\0.95 0.95\0.95 0.95\0.94 0.95\0.94

20 0.92\0.91 0.91\0.90 0.91\0.89 0.90\0.89 0.90\0.89

25 0.88\0.87 0.87\0.86 0.86\0.85 0.85\0.84 0.85\0.83

30 0.84\0.83 0.83\0.81 0.82\0.80 0.81\0.79 0.81\0.79

35 0.80\0.79 0.79\0.77 0.78\0.76 0.77\0.76 0.77\0.75

Table: Design table for spike-in model: p = 1000, detection power
β = 0.8. Achievable limits in FPR (α) as function of n, minimum
detectable correlation ρ1, and level α correlation threshold (shown as
ρ1\ρ in table).
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Experimental validation

Figure: Targeted ROC operating points (α, β) (diamonds) and observed
operating points (number pairs) of correlation screen designed from
Experimental Design Table. Each observed operating point determined
by the sample size n ranging over n = 10, 15, 20, 25, 30, 35. 46 / 58
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From false positive rate for fixed ρ to p-values

Recall asymptotic false positive probability for fixed δ, n, ρ

P(Nδ,ρ > 0) = 1− exp(−λδ,ρ,n)

Can relate false postive probability to maximal correlation:

P(Nδ,ρ > 0) = P(max
i
|ρi (δ)| > ρ)

with ρi (k) the (partial) correlation between i and its k-NN.

⇒ p-value associated with vertex i having observed k-NN (partial)
correlation = ρ̂i (k).

pvk(i) = 1− exp(−λk,ρ̂i (k),n)
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Example: 4-node-dependent Graphical Model

Figure: Graphical model with 4 nodes. Vertex degree distribution: 1 degree 1 node, 2 degree 2 nodes, 1 degree
3 node.
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Example: First 10 nodes of 1000-node Graphical Model

• 4 node Gaussian graphical model embedded into 1000 node
network with 996 i.i.d. ”nuisance” nodes
• Simulate 40 observations from these 1000 variables.
• Critical threshold is ρc,1 = 0.593. 10% level threshold is
ρ = 0.7156.
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Example: 1000-node Graphical Model

Note: log(λ) = −2 is equivalent to pv= 1− e−e
logλ

= 0.127.
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Example: NKI gene expression dataset

Netherlands Cancer Institute (NKI) early stage breast cancer

• p = 24, 481 gene probes on Affymetrix HU133 GeneChip

• 295 samples (subjects)

• Peng et al used 266 of these samples to perform covariance
selection

• They preprocessed (Cox regression) to reduce number of
variables to 1, 217 genes

• They applied sparse partial correlation estimation (SPACE)

• Here we apply hub screening directly to all 24, 481 gene probes

• Theory predicts phase transition threshold ρc,1 = 0.296
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NKI p-value waterfall plot for partial correlation hubs:
selected discoveries shown

Figure: Waterfall plot of p-values for concentration hub screening of the
NKI dataset. Selected vertex discoveries.
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NKI p-value waterfall plot for partial correlation hubs:
Peng et al discoveries shown

Figure: Waterfall plots of p-values for concentration hub screening of the
NKI dataset. Vertex discoveries using SPACE (Peng et al).
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NKI p-value waterfall plot for correlation hubs

Figure: Waterfall plots of p-values for correlation hub screening of the
NKI dataset. Vertex discoveries using SPACE (Peng et al).
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Summary and perspectives

• Conclusions
• For large p correlation mining hypersensitive to false positives
• Theory of false positive phase transitions and significance has

been developed in context of hub screening on R, R†, and
R†

xRxy.

• Other problems of interest
• Higher order measures of dependence (information flow)
• Time dependent samples of correlated multivariates
• Missing data some components of multivariate are intermittent
• Screening for other non-isomorphic sub-graphs
• Vector valued node attributes: canonical correlations.
• Misaligned signals: account for registration errors.
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