Convergence to Pure-Strategy Nash Equilibria Under Simple Learning Rules and Selection of Resilient Pure-Strategy Nash Equilibria

Richard J. La joint work with Siddharth Pal

Department of ECE & ISR

University of Maryland, College Park

hyongla@umd.edu

April 2, 2015

- Background
- Setup
- Classification of games
- Overview of existing literature
- Main results
 - Algorithm #1 Generalized Better Reply Path Algorithm
 - Algorithm #2 Simple Experimentation with Monitoring
- Future directions

Background

- Setup
- Classification of games
- Overview of existing literature
- Main results
 - Algorithm #1 Generalized Better Reply Path Algorithm
 - Algorithm #2 Simple Experimentation with Monitoring
- Future directions

- Increasing interest in application of game-theoretic framework to engineering systems
 - Communication networks
 - Distributed control and systems
 - Transportation networks and systems
 - Supply chain and inventory management

• Game theory is **NOT** about ...

• **Question:** Why is that only the men look angry and not enjoying the game?

- Game theory Study of rational decision making and/or strategic interactions among multiple rational decision makers ("players"') in situations of conflict and/or cooperation
 - Decision choice of which action/strategy to take based on available information
 - Consequences of decisions captured by payoffs or utilities
 - Implicit assumption interdependency in payoffs/utilities among players through choices
- Game a mathematical model that approximates complicated reality
 - Many different types of games
 - Suitable game depends on many factors
 - Leaves out many details of the reality

• Two aspects to applying game theory to engineering problems ...

Utility design

- Selection of suitable operating points as equilibria of game
- Desirable properties at equilibria efficiency, fairness

• Algorithm design or (adaptive) dynamics - Focus of this talk

- Convergence to desired operating point
- Robust to feedback delays
- Resilient to perturbation

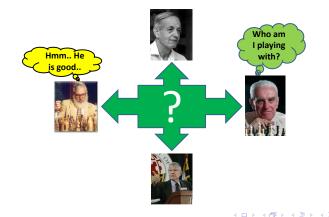
Background

Setup

- Classification of games
- Overview of existing literature
- Main results
 - Algorithm #1 Generalized Better Reply Path Algorithm
 - Algorithm #2 Simple Experimentation with Monitoring
- Future directions

Learning in Games (1)

- Incomplete-information (stage) game (some) agents unaware of the structure of the game
 - May not be aware of other agents
 - May not even be aware that they are playing games



Learning in Games (2)

- Players interact with each other many times
 - Can learn from the past payoffs and, possibly, actions of other players
- Examples: Dynamic channel access in cognitive radio, wireless sensor networks



Setup (1)

- Finite stage game (or one-shot game) in normal-form
 - $\mathcal{P} = \{1, 2, \dots, n\}$ set of n agents or players
 - Pure action space: A_i = {1, 2, ..., A_i} − set of A_i pure actions or strategies for agent i ∈ P
 - Payoff function: $U_i : \mathcal{A} \to \mathbb{R}$
 - U_i(a) is the payoff of agent i when action profile a = (a₁,..., a_n) ∈ A is played
- Terminology and notation
 - Mixed strategy of agent i: p_i ∈ Δ(A_i) − a probability distribution over pure action space A_i
 - Pure action/strategy profile: $(a_1, a_2, \dots, a_n) \in \mathcal{A} := \prod_{i \in \mathcal{P}} \mathcal{A}_i$
 - For $i \in \mathcal{P}$, $\mathbf{a}_{-i} \in \mathcal{A}_{-i} := \prod_{j \neq i} \mathcal{A}_j$
 - Given $J \subset \mathcal{P}$, $\mathbf{a}_J \in \mathcal{A}_J := \prod_{i \in J} \mathcal{A}_i$

(日) (周) (三) (三)

• Pure-strategy Nash equilibrium (PSNE) of stage game

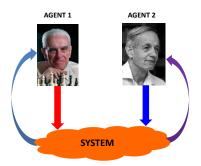
• Action profile
$$\mathbf{a}^{\star} = (a_1^{\star}, \dots, a_n^{\star}) \in \mathcal{A}$$
 is a PSNE if, for all $i \in \mathcal{P}$,

$$U_i(\mathbf{a}^{\star}) = \max_{a_i \in \mathcal{A}_i} U_i(a_i, \mathbf{a}_{-i}^{\star})$$

• No agent can increase its own payoff through unilateral deviation

- Denote the set of PSNEs by A_{NE}
 - We will assume \mathcal{A}_{NE} is nonempty

• Two different views of a game





- Global economy
- Markets
- Auctions

- Interconnected systems
- Regional economies

- Interactions among agents over time modeled as (infinitely) repeated game
 - Stage game repeated at every $t \in \mathbb{N} := \{1, 2, \ldots\}$
 - Action profile selected at time $t \mathbf{A}(t) = (A_i(t), i \in \mathcal{P})$
 - Agents update their (mixed) strategies via learning rules
- Focus on uncoupled dynamics updates of an agent's action/strategy do not depend on the payoff functions of others
 - Players unaware of payoff functions of others (or even other players)

• Impossibility result

• "Uncoupled dynamics do not lead to Nash equilibrium," Hart and Mas-Colell, *The American Economic Review* (2003)

"There exists no uncoupled dynamics which guarantee Nash convergence"

• Question of interest: When does A(t) converge to an equilibrium (in an appropriate sense) as $t \to \infty$?

- Background
- Setup
- Classification of games
- Overview of existing literature
- Main results
 - Algorithm #1 Generalized Better Reply Path Algorithm
 - Algorithm #2 Simple Experimentation with Monitoring
- Future directions

Classification of games (1)

• Identical interest games

• Payoff functions of all players are identical, i.e., there exists some function $\Phi: \mathcal{A} \to \mathbb{R}$ such that

 $U_i(\mathbf{a}) = \Phi(\mathbf{a})$ for all $i \in \mathcal{P}$ and $\mathbf{a} \in \mathcal{A}$

- At least one PSNE
 - Maximizer of Φ
- Potential games (Rosenthal 1973)
 - There exists potential function $\Psi : \mathcal{A} \to \mathbb{R}$ such that, for all $i \in \mathcal{P}$, $\mathbf{a}_{-i} \in \mathcal{A}_{-i}$ and $a_i, a_i^* \in \mathcal{A}_i$,

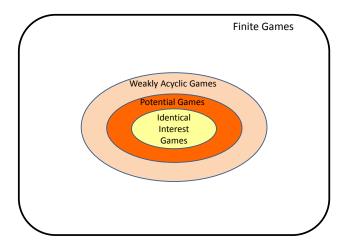
$$U_i(a_i, \mathbf{a}_{-i}) - U_i(a_i^*, \mathbf{a}_{-i}) = \Psi(a_i, \mathbf{a}_{-i}) - \Psi(a_i^*, \mathbf{a}_{-i})$$

- Change in an agent's payoff resulting from a unilateral change in action equal to the change in the "potential" function
- At least one PSNE
 - Maximizer of potential function $\boldsymbol{\Psi}$

- Weakly acyclic games (Young 1993)
 - There exists a global objective function Ω : A → ℝ such that, for all a ∈ A which is not a PSNE, there exist i* ∈ P and a[†]_{i*} ∈ A_{i*} so that U_i(a[†]_{i*}, a_{-i*}) > U_i(a) and Ω(a[†]_{i*}, a_{-i*}) > Ω(a)
 - For any non-PSNE action profile, at least one agent's local payoff function is aligned with global objective function
 - Alternate definition: For every a ∈ A, there exists a better reply path (a(1),...,a(L)) such that
 - $\mathbf{a}(1) = \mathbf{a}$ and $\mathbf{a}(L) \in \mathcal{A}_{\mathit{NE}}$
 - for all $\ell \in \{1, \ldots, L-1\}$, there is **exactly one agent** i^{ℓ} such that $a_{i^{\ell}}(\ell+1) \neq a_{i^{\ell}}(\ell)$ and $U_{i^{\ell}}(\mathbf{a}(\ell+1)) > U_{i^{\ell}}(\mathbf{a}(\ell))$

Learning in Games – Classification of games (3)

• Relation among different classes of games



- Background
- Setup
- Classification of games

• Overview of existing literature

- Main results
 - Algorithm #1 Generalized Better Reply Path Algorithm
 - Algorithm #2 Simple Experimentation with Monitoring
- Future directions

Existing literature on learning in games (1)

- Fictitious play (Brown 1951)
 - Players form beliefs about opponents' plays and behave rationally w.r.t. their **beliefs**

$$a_i(t) = rg\max_{a_i \in \mathcal{A}_i} \sum_{\mathbf{a}_{-i} \in \mathcal{A}_{-i}} \mu_i^t(\mathbf{a}_{-i}) \cdot U_i(a_i, \mathbf{a}_{-i})$$

where

$$\mu_i^t(\mathbf{a}_{-i}) = \frac{n_i^t(\mathbf{a}_{-i})}{t-1} \text{ and } n_i^t(\mathbf{a}_{-i}) = \sum_{\tau=1}^{t-1} \mathbf{1} \{ \mathbf{A}_{-i}(\tau) = \mathbf{a}_{-i} \}$$

• Regret matching (Hart & Mas-Colell 2000)

- At time $t+1 \in \mathbb{N}$, agent $i \in \mathcal{P}$ either
 - continues playing action $A_i(t) = a_i$, or
 - switches to other action $a_i^* \neq A_i(t)$ with probability proportional to regret $R_t^i(a_i, a_i^*)$ where

$$egin{split} \mathcal{R}^i_t(a_i,a^*_i) &= rac{1}{t} \left[\sum_{ au \leq t: A_i(au) = a_i} \left(U_i(a^*_i,\mathbf{A}_{-i}(au)) - U_i(\mathbf{A}(au))
ight)
ight]^+ \end{split}$$

Existing literature on learning in games (2)

• Regret testing (Foster & Young 2003)

- At time t ∈ kT, where T > 1 and k ∈ IN, each agent i ∈ P chooses a mixed strategy p_i(k) ∈ Δ(A_i)
- At time t = kT, kT + 1,..., (k + 1)T 1, agent i chooses an action according to mixed strategy p_i(k)
- 3 At time t = (k + 1)T, agent *i* computes vector of **average regrets** over T periods

$$\mathcal{R}_{\mathsf{a}_i}^i(k) = rac{1}{T}\sum_{ au=kT}^{(k+1)T-1} ig(U_i(\mathsf{a}_i, \mathbf{A}_{-i}(au)) - U_i(\mathbf{A}(au))ig), \; \mathsf{a}_i \in \mathcal{A}_i$$

- If Rⁱ_{ai}(k) ≥ ρ (ρ > 0) for some a_i ∈ A_i, randomly choose a new mixed strategy p_i(k + 1) ∈ Δ(A_i). Otherwise, p_i(k + 1) = p_i(k).
- Increase k by one and go back to step 2

- Other learning rules
 - Efficient PSNE or socially efficient action profile Pradelski and Young (2012), Marden, Young and Pao (2012), and Menon and Baras (2013)
 - Perfect foresight equilibrium
 - Many, many more!

Overview

- Setup
- Classification of game
- Background
- Overview of existing literature
- Main results
 - Algorithm #1 Generalized Better Reply Path Algorithm
 - Scenario #1 Basic algorithm
 - Scenario #2 Feedback delays
 - Scenario #3 Erroneous payoff estimates
 - Numerical examples
 - Algorithm #2 Simple Experimentation with Monitoring
- Numerical examples
- Future directions

Basic algorithm (1)

• For every
$$\mathbf{a} = (a_1, a_2, \dots, a_n) \in \mathcal{A}$$
 and $i \in \mathcal{P}$, define
 $BR_i(\mathbf{a}) = \{a_i^* \in \mathcal{A}_i \mid U_i(a_i^*, \mathbf{a}_{-i}) > U_i(\mathbf{a})\}$

• Set of strictly better replies

- Generalized Better Reply Path Algorithm (GBRPA)
 - At time t = 2, 3, ..., agent i chooses its action $a_i(t)$ as follows
 - If $BR_i(\mathbf{A}(t-1)) = \emptyset$ $\diamond A_i(t) = A_i(t-1)$

$$\beta_i(a_i; \mathbf{A}(t-1)) \in [\underline{\epsilon}, \overline{\epsilon}]$$

for all $a_i \in BR_i(\mathbf{A}(t-1))$, where $0 < \underline{\epsilon} \le \overline{\epsilon} < 1$ \diamond Pick $A_i(t) = A_i(t-1)$ with prob.

$$1 - \sum_{\mathsf{a}_i \in BR_i(\mathsf{A}(t-1))} \beta_i(\mathsf{a}_i; \mathsf{A}(t-1))$$

• Generalized weakly acyclic games (Pal and La, ACC 2015)

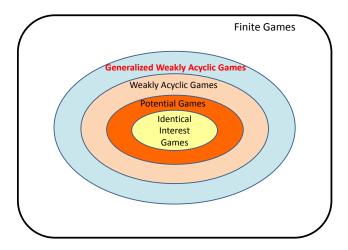
- Generalized better reply path: a sequence of action profiles $(\mathbf{a}(1), \ldots, \mathbf{a}(K))$, where for every $\ell = 1, \ldots, K 1$, there exists $\mathcal{I}(\ell) \subset \mathcal{P}$ such that
 - for all $i \in \mathcal{I}(\ell)$, $a_i(\ell) \neq a_i(\ell+1)$ and $U_i(\mathbf{a}(\ell)) < U_i(a_i(\ell+1), \mathbf{a}_{-i}(\ell))$

• for all
$$i \neq \mathcal{I}(\ell)$$
, $a_i(\ell) = a_i(\ell+1)$

- A game is generalized weakly acyclic if
 - $\mathcal{A}_{NE} \neq \emptyset$;
 - for all non-PSNE action profile $\mathbf{a} \in \mathcal{A} \setminus \mathcal{A}_{NE}$, there exists a generalized better reply path $(\mathbf{a}(1), \dots, \mathbf{a}(L))$ with $\mathbf{a}(1) = \mathbf{a}$ and $\mathbf{a}(L) \in \mathcal{A}_{NE}$
- Weakly acyclic games are special cases with $|\mathcal{I}(\ell)|=1$

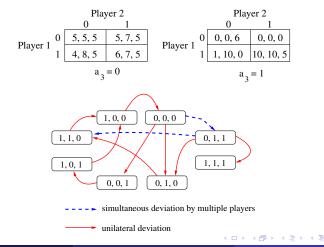
Basic algorithm (3)

• Relation among different classes of games



Basic algorithm (4)

- Example of generalized weakly acyclic game that is **not** weakly acyclic
 - 3-player game with binary action space $\mathcal{A}_i = \{0,1\}$, i = 1,2,3
 - Unique (weak) PSNE (1, 1, 1)



Basic algorithm (5)

Assumption

We assume
$$\max_{i\in\mathcal{P}} \left(\max_{\mathbf{a}^*\in\mathcal{A}}\sum_{\mathbf{a}_i\in BR_i(\mathbf{a}^*)}eta(\mathbf{a}_i;\mathbf{a}^*)
ight) < 1$$

Even when BR_i(A(t − 1)) ≠ Ø, agent i chooses A_i(t − 1) at time t with positive probability

Theorem

Suppose that the game is generalized weakly acyclic. Then, starting with any arbitrary initial action profile $A(1) = a \in A$, the action profile converges to a PSNE almost surely under GBRPA. In other words, with probability 1 (w.p.1), there exist finite T^* and a PSNE a^* such that $A(t) = a^*$ for all $t \ge T^*$.

Theorem

Suppose that the game is generalized weakly acyclic. Then, starting with an arbitrary initial action profile $\mathbf{A}(1) = \mathbf{a} \in \mathcal{A}$, the probability $\mathbb{P} \left[\mathbf{A}(t) \notin \mathcal{A}_{NE} \right]$ decays geometrically under GBRPA, i.e., there exist $C < \infty$ and $0 < \eta < 1$ such that

$$\mathbb{P}\left[\mathbf{A}(t) \notin \mathcal{A}_{\mathsf{NE}}\right] \leq C \cdot \eta^t \text{ for all } t \in \mathbb{N}.$$

- Finite expected convergence time
- Parameter η depends on the longest among the shortest generalized better reply paths to a PSNE from non-PSNE action profiles

Theorem

Suppose that the game is **not** generalized weakly acyclic. Then, there exists at least one action profile $\mathbf{a}^* \in \mathcal{A}$ such that, if $\mathbf{A}(1) = \mathbf{a}^*$, $\mathbf{A}(t) \notin \mathcal{A}_{NE}$ for all $t \in \mathbb{N}$.

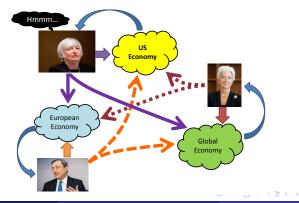
- If $\mathbf{A}(1) \sim \mu$ and $\mu(\mathbf{a}) > 0$ for all $\mathbf{a} \in \mathcal{A}$, there is positive probability that the GBRPA will not converge to a PSNE ever
- GBRPA is guaranteed to converge to a PSNE, starting with any arbitrary initial action profile, **if and only if** the game is generalized weakly acyclic

Overview

- Setup
- Classification of game
- Background
- Overview of existing literature
- Main results
 - Algorithm #1 Generalized Better Reply Path Algorithm
 - Scenario #1 Basic algorithm
 - Scenario #2 Feedback delays
 - Scenario #3 Erroneous payoff estimates
 - Numerical examples
 - Algorithm #2 Simple Experimentation with Monitoring
- Numerical examples
- Future directions

Feedback delays (1)

- Delays in the system
 - Forward delays delayed effects of new actions
 - Feedback delays delayed realized payoff information
- **Example:** Economic policies implemented by various parties and their effects on the regional and global economies

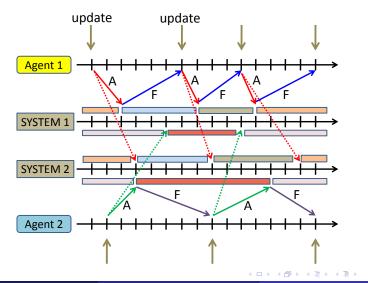


- Both forward and feedback delays experienced by agent *i* ∈ P modeled using sequences of random variables
- For the second view of a game
 - *Tⁱ* = {*Tⁱ_k*, *k* ∈ ℤ₊}, where *Tⁱ_k* denotes the time at which agent *i* updates its action (or, equivalently, receives the payoff feedback) for the *k*th time with *Tⁱ₀* = 1
 - $a_i(t) = a_i(T_k^i)$ for all $t \in \{T_k^i, \ldots, T_{k+1}^i 1\}$, i.e., keeps the same action till next update
 - Payoff (feedback) seen by agent *i* at time T_k^i given by $U_i(\tilde{\mathbf{a}}^i(R_k^i))$, where $R_k^i \in \{T_{k-1}^i, \dots, T_k^i 1\}$

• $\tilde{\mathbf{a}}^i(t)$ - action profile in effect at time t

Feedback delays (3)

• A picture is worth a thousand words ...



Theorem

Suppose that the game is generalized weakly acyclic. Then, under some mild technical assumptions, starting with an arbitrary initial action profile $A(1) = a \in A$, the action profile converges to a PSNE almost surely. In other words, w.p.1, there exist finite T^* and a PSNE a^* such that $A(t) = a^*$ for all $t \ge T^*$.

• Delays have no effect on almost sure convergence of action profile to a PSNE under mild technical conditions

Overview

- Setup
- Classification of game
- Background
- Overview of existing literature

Main results

- Algorithm #1 Generalized Better Reply Path Algorithm
 - Scenario #1 Basic algorithm
 - Scenario #2 Feedback delays
 - Scenario #3 Erroneous payoff estimates
 - Numerical examples
- \bullet Algorithm #2 Simple Experimentation with Monitoring
- Numerical examples
- Future directions

Erroneous payoff estimation (1)

- In practice, agents may not be able to accurately determine $BR_i(\mathbf{A}(t))$
 - Noisy payoff measurements
- Agents may be able to determine them more reliably over time
- Let pⁱ : IN → [0, 1], where pⁱ(t) is the probability that agent i will incorrectly determine if action a_i belongs to BR_i(a) at time t
 - Independent among actions

Assumption

There exists a decreasing, positive sequence $(\epsilon_t, t \in \mathbb{N})$ such that

- i. $\lim_{t\to\infty} \epsilon_t = 0$, and
- ii. for every $i \in \mathcal{P}$, there are $c_i > 0$ and $\gamma_i > 0$ satisfying $p^i(t) \sim c_i \cdot \epsilon_t^{\gamma_i}$.

Theorem

Suppose that the game is generalized weakly acyclic and $\sum_{t \in \mathbb{N}} \epsilon_t^{\kappa} = \infty$, where κ is a constant that satisfies some conditions. Then, under an additional mild technical condition,

$$\lim_{t\to\infty}\mathbb{P}\left[\mathbf{A}(t)\in\mathcal{A}_{NE}\right]=1.$$

- Weaker than almost sure convergence
- If $\epsilon_t \neq 0$, but close to 0, then $\mathbf{A}(t) \in \mathcal{A}_{NE}$ with high probability for all sufficiently large t

Overview

- Setup
- Classification of game
- Background
- Overview of existing literature

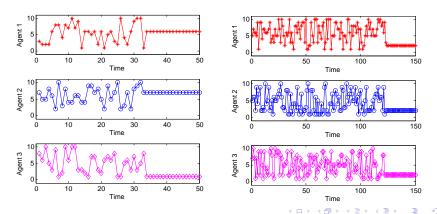
Main results

• Algorithm #1 – Generalized Better Reply Path Algorithm

- Scenario #1 Basic algorithm
- Scenario #2 Feedback delays
- Scenario #3 Erroneous payoff estimates
- Numerical examples
- Algorithm #2 Simple Experimentation with Monitoring
- Future directions

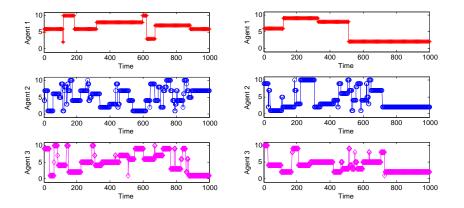
Numerical example (1)

- 3 players with identical action space $\mathcal{A} = \{1,2,\ldots,10\}$
- Two PSNEs (6, 7, 1) and (2, 2, 2)
- No delays case



Numerical example (2)

- Forward delays \sim geometric([0.01 0.1 0.05])
- Backward delays = 1



- Setup
- Classification of game
- Background
- Overview of existing literature

Main results

• Algorithm #1 - Generalized Better Reply Path Algorithm

• Algorithm #2 - Simple Experimentation with Monitoring

• Future directions

Simple experimentation with monitoring (1)

- In practice,
 - Payoffs likely noisy or random

"I regard this randomness as a crucial feature of many real-world games, where payoffs are likely to be affected by a wide assortment of forces that have been excluded when constructing the model"

- Larry Samuelson, Evolutionary Games and Equilibrium Selection

- Agents may sometimes behave irrationally
 - Faulty or unexpected behavior
- Question: How do we select more resilient equilibrium?
 - Select equilibria with a certain level of resilience, or
 - Choose the most resilient equilibria

Simple experimentation with monitoring (2)

- State of an agent (C)onverged, (E)xplore, a(L)ert
 - T alert states L_1, L_2, \ldots, L_T
 - Still receiving the largest payoff possible, but on guard to determine if it needs to explore
 - State of agent $i \in \mathcal{P}$ at time $t \in \mathbb{N}$ denoted by $s_i(t)$
- Algorithm #2 Simple Experimentation with Monitoring (SEM)
 - Action selection

•
$$s_i(t) = E \implies \mathbb{P}[a_i(t) = a_i] \ge \delta > 0$$
 for all $a_i \in \mathcal{A}_i$

- $s_i(t) = C \text{ or } L_\ell$, $\ell = 1, 2, \dots, T \Longrightarrow \mathbb{P} \left[a_i(t) = a_i(t-1) \right] = 1$
- Occasional faulty or irrational behavior
 - At every $t \in \mathbb{N}$, each agent makes a mistake and chooses a random action with probability $\epsilon > 0$
 - Every action chosen with positive probability

・ロト ・聞 ト ・ 国 ト ・ 国 ト … 国

• State transition

• From (*C*)

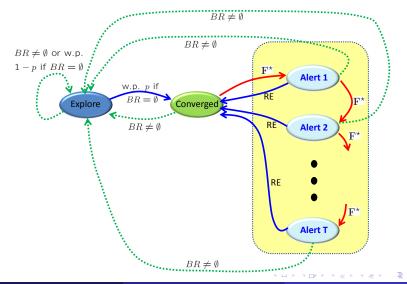
- If $BR_i(\mathbf{A}(t-1)) \neq \emptyset$, move to (E)
- Elseif BR_i(A(t − 1)) = Ø but the payoffs change (significantly), switch to (L₁)
 - \bullet Call this event ${\bm F}^\star$
- Else, stay at (C)
- From (*E*)
 - If $BR_i(\mathbf{A}(t-1)) \neq \emptyset$, stay at (E)
 - Else (i.e., $BR_i(\mathbf{A}(t-1)) = \emptyset$)
 - With prob. p (0 < p < 1), transition to (C)
 - With prob. 1 p, remain at (E)

• From
$$(L_{\ell}), \ \ell = 1, ..., T$$
,

- If $BR_i(\mathbf{A}(t-1)) \neq \emptyset$, move to (E)
- Elseif the payoffs return to the expected payoffs last time at (C) (denoted RE), return to (C)
- Else, jump to $(L_{\ell+1})$ if $\ell < T$ and (E) if $\ell = T$

Simple experimentation with monitoring (4)

State transitions



Simple experimentation with monitoring (5)

• Define
$$d : \mathcal{A} \times \mathcal{A} \to \mathbb{Z}_+ := \{0, 1, 2, \ldots\}$$
, where
 $d(\mathbf{a}^1, \mathbf{a}^2) = \sum_{i \in \mathcal{P}} \mathbf{1} \{ a_i^1 \neq a_i^2 \}, \ \mathbf{a}^1, \mathbf{a}^2 \in \mathcal{A}$

Number of agents playing different actions

• For
$$au \in \mathbb{Z}_+$$
, let $\mathcal{N}_ au : \mathcal{A} o 2^\mathcal{A}$, where

$$\mathcal{N}_{ au}(\mathbf{a}) = \{\mathbf{a}' \mid d(\mathbf{a},\mathbf{a}') \leq au\}, \ \mathbf{a} \in \mathcal{A}$$

• For each PSNE $\mathbf{a}^{\star} \in \mathcal{A}_{NE}$, define its resilience to be

 $R(\mathbf{a}^{\star}) = \max\{\tau \geq 0 \mid BR_i(\mathbf{a}^{\star}_i, \mathbf{a}'_{-i}) = \emptyset \text{ for all } i \in \mathcal{P} \text{ and } \mathbf{a}' \in \mathcal{N}_{\tau}(\mathbf{a}^{\star})\}$

- Maximum number of deviations PSNE can tolerate before unraveling
- The largest resilience among all PSNEs

$$R^{\star}_{\max} := \max_{\mathbf{a}^{\star} \in \mathcal{A}_{NE}} R(\mathbf{a}^{\star})$$

Assumption

For all $\mathbf{a} \in \mathcal{A}$ and for all $J \subset \mathcal{P}$, there exist (i) $i \notin J$ and (ii) $\mathbf{a}_J^* \in \mathbf{A}_J$ such that $U_i(\mathbf{a}_J^*, \mathbf{a}_{-J}) \neq U_i(\mathbf{a})$ (A4)

• Interdependence assumption by Marden, Young and Pao (2012, IEEE CDC)

Theorem

Suppose that either Assumption (A4) or (A5) holds and $A_{NE} \neq \emptyset$. Then, one of the following holds as $\epsilon \downarrow 0$.

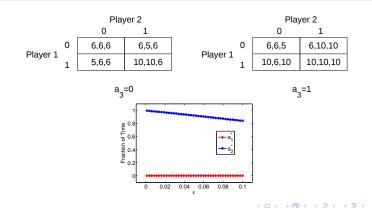
- If R^{*}_{max} < T, an action profile a ∈ A is stochastically stable if and only if it is a PSNE and R(a) = R^{*}_{max}.
- If R^{*}_{max} ≥ T, an action profile a ∈ A is stochastically stable if and only if it is a PSNE and R(a) ≥ T.
- When ε is small, for all sufficiently large t, action profile A(t) lies in the set of stochastically stable PSNEs with high probability
- Allows us a means of choosing PSNEs with a certain level of resilience

Numerical example (1)

• 3 players with identical action space $\mathcal{A} = \{0, 1\}$ • Two PSNEs

•
$$\mathbf{a}_1^{\star} = (0, 0, 0) - 0$$
-resilient

•
$$\mathbf{a}_2^\star = (1,\ 1,\ 1) - 1$$
-resilient



- Setup
- Classification of game
- Background
- Overview of existing literature
- Main results
 - Algorithm #1 Generalized Better Reply Path Algorithm
 - Algorithm #2 Simple Experimentation with Monitoring

Future directions

- Existence of global objective function for generalized weakly acyclic games
- Modeling random payoffs and examining their effects on algorithm design and resilience
- Joint utility and algorithm designs for efficiency and resilience

This work was in part funded by a grant from National Science Foundation (NSF) and grants from National Institute of Standards and Technology (NIST)