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POINT-TO-POINT COMMUNICATION

The mathematics of digital communication [Shannon ’48]

A sender X communicates to receiver Y over a noisy channel q(y|x).

M Encoder
Xn

q(y|x) Yn
Decoder 1 M̂

Figure: Discrete memoryless channel

The maximum rate that can be reliably transmitted (using blocks)

C = max
p(x)

I(X;Y).
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EXTENSION TO NETWORKS

What if there are more than one sender/receiver?

Can we obtain a similar capacity region?

The answer is mostly NO, i.e. we do not know the capacity regions.

NOTABLE EXCEPTION: Multiple access channel
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OPEN SETTING 1: BROADCAST CHANNELS [COVER ’72]

(M1,M2) Encoder
Xn

q(y, z|x)

Yn

Zn

Decoder 1

Decoder 2

M̂1

M̂2

Figure: Discrete memoryless broadcast channel

Goal: Compute Capacity Region or set of achievable rates (R1,R2)?
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OPEN SETTING 2: INTERFERENCE CHANNELS

M1

M2

Encoder 1

Encoder 2

Xn
1

Xn
2

q(y1, y2|x1, x2)

Yn
1

Yn
2

Decoder 1

Decoder 2

M̂1

M̂2

Figure: Discrete memoryless interference channel

Goal: compute Capacity Region or set of achievable rates (R1,R2)?
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AN OBSERVATION (FOLK-LORE)

For these two problems
there are achievable regions (one for each) whose optimality or
sub-optimality had not been established for over 30 years !
for both these regions, there is a way to test the optimality or
sub-optimality

the testing procedure: infinite computational resources
if suboptimal, the procedure terminates in finite time

Testing strategy: Suppose some one gives you an achievable strategy
for any channel q, it yields a computable region A(q)
as n→∞, the normalized region 1

nA(q⊗ · · · ⊗ q︸ ︷︷ ︸
n

)→ C

then it is enough to test whether

A(q) = 1
2
A(q⊗ q) ∀q (optimal)

A(q) ( 1
2
A(q⊗ q) for some q (sub-optimal)
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MARTON’S REGION (BROADCAST)

The set of rate pairs (R1,R2) satisfying

R1 ≤ I(U,W;Y)

R2 ≤ I(V,W;Z)

R1 + R2 ≤ min{I(W;Y), I(W;Z)}+ I(U;Y|W) + I(V;Z|W)− I(U;V|W)

for any (U,V,W)→ X
q→ (Y,Z) is achievable

REMARKS:

An interesting (and natural generalization) of a strategy for deterministic
broadcast channels [Marton ’79]

No reason to believe that it may be optimal or its optimality was worth
investigating

Even for a single channel q(y, z|x) there were no bounds on |U| or |V|,
which made the region incomputable

Marton
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HAN AND KOBAYASHI’S REGION (INTERFERENCE)

A rate-pair (R1,R2) is achievable for the interference channel if

R1 < I(X1;Y1|U2,Q),

R2 < I(X2;Y2|U1,Q),

R1 + R2 < I(X1,U2;Y1|Q) + I(X2;Y2|U1,U2,Q),

R1 + R2 < I(X2,U1;Y2|Q) + I(X1;Y1|U1,U2,Q),

R1 + R2 < I(X1,U2;Y1|U1,Q) + I(X2,U1;Y2|U2,Q),

2R1 + R2 < I(X1,U2;Y1|Q) + I(X1;Y1|U1,U2,Q) + I(X2,U1;Y2|U2,Q),

R1 + 2R2 < I(X2,U1;Y2|Q) + I(X2;Y2‘|U1,U2,Q) + I(X1,U2;Y1|U1,Q)

for some pmf p(q)p(u1, x1|q)p(u2, x2|q), where |U1| ≤ |X1|+ 4,
|U2| ≤ |X2|+ 4, and |Q| ≤ 7.

Seems complicated to evaluate and use the 1-letter vs 2-letter strategy for
testing optimality

CZI
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SUMMARY OF TALK: ON EVALUATION OF REGIONS

Statutory Disclaimer
Know more about evaluation of Marton’s region than that of Han-Kobayashi

Han-Kobayashi region
Main: Strict sub-optimality of the Han-Kobayashi region

Restrict to a class of channels where evaluation is easy

Show that 2-letter (dependence over time) beats 1-letter (independent
over time)

Marton’s region
Cardinality bounds for evaluation of Marton’s region for broadcast
channel

Evaluation of Marton’s region for any binary input broadcast channel

Other results that helps evaluate Marton’s region for broadcast channels
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CLEAN-Z-INTERFERENCE (CZI) CHANNELS (N-X-Y ‘15)

M1

M2

Encoder 1

Encoder 2

Xn
1

Xn
2

q(y1|x1, x2)
Yn

1

Yn
2 = Xn

2

Decoder 1

Decoder 2

M̂1

M̂2

Proposition

The HK region of a CZI channel is the set of rate pairs (R1,R2) that satisfy

R1 < I(X1;Y1|U2,Q),

R2 < H(X2|Q),

R1 + R2 < I(X1,U2;Y1|Q) + H(X2|U2,Q)

for some pmf p(q)p(u2|q)p(x2|u2)p(x1|q), where |U2| ≤ |X2| and |Q| ≤ 2.
Chandra Nair Michigan 2015 Mar 30, 2015 10 / 32



CLEAN-Z-INTERFERENCE (CZI) CHANNELS (N-X-Y ‘15)

M1

M2

Encoder 1

Encoder 2

Xn
1

Xn
2

q(y1|x1, x2)
Yn

1

Yn
2 = Xn

2

Decoder 1

Decoder 2

M̂1

M̂2

Proposition

The HK region of a CZI channel is the set of rate pairs (R1,R2) that satisfy

R1 < I(X1;Y1|U2,Q),

R2 < H(X2|Q),

R1 + R2 < I(X1,U2;Y1|Q) + H(X2|U2,Q)

for some pmf p(q)p(u2|q)p(x2|u2)p(x1|q), where |U2| ≤ |X2| and |Q| ≤ 2.
Chandra Nair Michigan 2015 Mar 30, 2015 10 / 32



RESULTS ON CZI

Proposition

For a CZI channel, for any λ ≤ 1

max
RHK

(λR1 + R2) = max
C

(λR1 + R2) = max
p1(x1)p2(x2)

λI(X1;Y1) + H(X2).

Proof is rather straightforward and uses standard converse techniques

Lemma

For a CZI channel, for all λ > 1 max
RHK

(λR1 + R2) is

max
p1(x1)p2(x2)

{
I(X1,X2;Y1) + C

p2(x2)

[
H(X2)− I(X2;Y1|X1) + (λ− 1)I(X1;Y1)

]}
,

where C
x
[f (x)] of f (x) denotes the upper concave envelope of f (x) over x.
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SUB-OPTIMALITY OF HK

For λ > 1 it turns out that there are examples where

max
RHK

(λR1 + R2) < max
C

(λR1 + R2)

An example (CZI), i.e. Y2 = X2

X2 = 0 X2 = 1

X1

0

1

Y1

0

1

X1

0

1

Y1

0

1

1
2

1
2

max
RHK

(2R1 + R2) = 1.1075163.. < 1.108035632 ≤ max
2-RHK

(2R1 + R2)
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OTHER COUNTEREXAMPLES

Chandra Nair Michigan 2015 Mar 30, 2015 13 / 32



Evaluation of Marton’s region
Extremal auxiliaries

Mar 30, 2015



BINARY SKEW-SYMMETRIC BROADCAST CHANNEL

Evaluating Marton’s region
Simple hard problem (unknown capacity region)

X

Y

Z

0

1

0

1

1

0

1
2

1
2

Figure: Binary skew-symmetric broadcast channel

Conjecture: [Nair-Wang ITA ’08] For every (U,V)→ X → (Y,Z)

I(U;Y) + I(V;Z)− I(U;V) ≤ max{I(X;Y), I(X;Z)}
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HISTORICAL REMARKS: PERTURBATION APPROACH

The conjecture caught the attention of Amin Gohari and Venkat
Anantharam

Amin [2009] developed the perturbation approach to show that one can
restrict one’s attention to |U|, |V| ≤ 2

More generally, they used the ideas to show that one can restrict ones
attention to |U| ≤ |X|, |V| ≤ |X| while computing Marton’s achievable
region

[Jog and Nair ITA 2010] extended the perturbation approach to show that
the conjecture was true

[Geng, Nair, and Wang 2010] showed that the information inequality is true
for all broadcast channels when |X| = 2

Perturbation approach: A technique to reduce the search space (bounding
cardinalities and more) of extremal auxiliary distributions
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ASIDE: EXTREMAL DISTRIBUTIONS AND THEIR USES

Achievable regions (or outer bounds) are usually written as a union of regions
- each corresponding to a distribution over random variables (including
auxiliary random variables)

Distributions of random variables that give rise to points in the boundary (of
the union) form extremal distributions

Uses of characterizing extremal distributions
If we can show that extremal distributions ⊆ S (a proper subset of all
distributions), this makes computations of achievable regions (or outer
bounds) simpler

Is A(q) ?
= 1

2A(q⊗ q)

We could utilize properties of extremal distributions to show that inner
and outer bounds match for classes of channels

The (famous) MIMO Gaussian broadcast channel
[Weingarten-Steinberg-Shamai 2007]
The capacity of BSC/BEC broadcast channel [Nair 2012]

representation using concave envelopes
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Current tools - I
Perturbation based arguments

Mar 30, 2014



THE PERTURBATION ARGUMENT

(GOHARI-ANANTHARAM)

maxp(u,v|x) I(U;Y) + I(V;Z)− I(U;V)

Theorem (Gohari-Anantharam)
Suffices to consider |U|, |V| ≤ |X|

Observe: Bunt-Caratheodory does not work here
Proof:
Suppose p∗(u, v|x) is a maximizer.

pε(u, v|x) := p∗(u, v|x)(1 + εL(u)).

For pε(u, v|x) to be a valid distribution it is necessary that∑
u

p∗(u|x)L(u) = 0 ∀x.

A non-zero L(u) exists when |U| > |X|.
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ARGUMENT..

I(U;Y)+ I(V;Z)− I(U;V) = H(Y)+H(Z)+H(U,V)− H(U,Y)− H(V,Z)

pε(u, v|x) := p∗(u, v|x)(1 + εL(u)).

S(ε) := Hpε(U,V)− Hpε(U,Y)− Hpε(V,Z)

Since p∗(u, v|x) is a maximizer
d
dεS(ε)

∣∣∣
ε=0

= 0, d2

dε2 S(ε)
∣∣∣
ε=0
≤ 0

These two conditions imply that S(ε) has to be a constant.

Choose ε large enough to reduce support of U by one

Repeat till |U| ≤ |X|, and similarly |V| ≤ |X|
This perturbation argument has been generalized to

prove information inequalities
restrict space of extremal distributions
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Current tools - II
Concave envelopes and extremal distributions
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USING CONCAVE ENVELOPES

Superposition coding region for degraded broadcast channels: the union of
rate pairs satisfying:

R2 ≤ I(V;Z)

R1 ≤ I(X;Y|V)

for some pmf p(v, x) : V → X → (Y,Z)

Characterization of boundary: using supporting hyperplanes
For λ ≥ 1, observe that

max
(R1,R2)∈C

λR2 + R1 ≤ max
p(v,x)

λI(V;Z) + I(X : Y|V)

= max
p(v,x)

λ
(
I(X;Z)− I(X;Z|V)

)
+ I(X : Y|V)

= max
p(x)

(
λI(X;Z) + max

p(v|x)

(
I(X;Y|V)− λI(X;Z|V)

))
= max

p(x)
λI(X;Z) + C[I(X;Y)− λI(X;Z)]
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APPLICATION: DEGRADED BSC BROADCAST CHANNEL

Proposition: When X → Y → Z is a degraded BSC broadcast channel, it
suffices to consider (V,X) ∼ DSBS(s) to compute, for any λ ≥ 1,

max
(R1,R2)∈C

λR2 + R1.

Conjectured by Cover and established by Wyner-Ziv (Mrs. Gerber’s
Lemma)

From previous slide, we saw that we wish to compute

max
p(x)

λI(X;Z) + C[I(X;Y)− λI(X;Z)]

Claim: The maximum happens at P(X = 0) = 1
2 .
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DEGRADED BSC BROADCAST, p = 0.1, q = 0.2

0 0.2 0.4 0.6 0.8 1

P(X=0)

0

0.005

0.01

0.015

0.02

I(
X

;Y
)−
λ
I(
X

;Z
) 

λ= 1.85

Observe that: The plot of I(X;Y)− λI(X;Z) vs P(X = 0) is symmetrical
about P(X = 0) = 1

2 . Implies U → X ∼ BSC (Q.E.D.)
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RESULTS

Capacity results using extremal distributions

MIMO Gaussian broadcast channel [Weingarten-Steinberg-Shamai ’2006]

BSC-BEC broadcast channel [Nair ’10]

Capacity results using concave envelopes

BSC-BEC broadcast channel [Nair ’10]

Classes of product broadcast channels [ Geng-Gohari-Nair-Yu ’2012]

MIMO Gaussian BC with common message [Geng-Nair 2014]

Other results using concave envelopes

Strict sub-optimality of UV outer bound
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COMBINING PERTURBATION AND CONCAVE ENVELOPES

New cardinality bounds on Marton’s achievable region
[Anantharam-Gohari-Nair 2013]

|U|+ |V| ≤ |X|+ 1 suffices

Further, can restrict to X = f (U,V)

Theorem
For a binary input broadcast channel, the maximum of λR1 + R2 in Marton’s
region, when λ ≥ 1 is,

min
α∈[0,1]

max
p(x)

(λ− α)I(X;Y) + αI(X;Z) + Cp(x)
[
− (λ− α)I(X;Y)− αI(X;Z)

+ max{λI(X;Y), I(X : Z)}
]
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IDEA OF PROOF

Suppose p(u, v, x) is an extremal distribution such that

C[−(α− λ)H(Y)− λH(Z) + Tq,α(X)]

= −(α− λ)H(Y)− λH(Z) + αI(U;Y) + I(V;Z)− I(U;V),

then the right hand side is locally concave with respect to all perturbations of
p(u, v, x).
Rearrange the right hand side as

λ(H(Y)− H(Z))−αH(Y|U) + H(V|U)−H(Z|V)

Consider a perturbation of the form

pε(u, v, x) = p(u, v, x)(1 + εf (u)),
(∑

u

p(u)f (u) = 0
)
.

For the second derivative to be negative, we need

d2

dε2 [H(Y)− H(Z)]ε=0 ≤ 0
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IDEA OF PROOF (CNTD...)

Alternately, rearrange the right hand side as

(1− λ)(H(Z)− H(Y))−H(Z|V) + H(U|V)−H(U|Y)− (α− 1)H(Y|U)

Consider a perturbation of the form

p̂ε(u, v, x) = p(u, v, x)(1 + εg(v)),
(∑

v

p(v)g(v) = 0
)
.

For the second derivative to be negative, we need

d2

dε2 [H(Z)− H(Y)]ε=0 ≤ 0
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OBSERVATION

For a fixed channel q(y, z|x) the term H(Y)− H(Z) depends only on p(x).

Hence, if there exists f (u) and g(v) such that pε(x) = p̂ε(x) for all x ∈ X , then
one would need to have

d2

dε2 [H(Y)− H(Z)]ε=0 = 0.

This will in turn force the convex terms to have zero second derivative as well.

As a consequence, it will turn out that the expression

−(α− λ)H(Y)− λH(Z) + αI(U;Y) + I(V;Z)− I(U;V)

will remain unchanged by either of these perturbations.

Set ε large enough so that the support of U or V reduces by one.
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CONDITIONS FOR EXISTENCE OF f (u), g(v)

1
∑

u,v p(u, v, x)f (u) =
∑

u,v p(u, v, x)g(v) ∀x ∈ X .
From the condition: pε(x) = p̂ε(x) for all x ∈ X .

2
∑

u,v,x p(u, v, x)f (u) = 0.
From the condition: pε(x) is a valid probability distribution.

3
∑

u,v,x p(u, v, x)g(v) = 0.
From the condition: p̂ε(x) is a valid probability distribution.

So there are |X|+ 1 linear constraints on a vector of size |U|+ |V|.

A non-trivial solution exists when |U|+ |V| > |X|+ 1.
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OTHER RESULTS FOR COMPUTING MARTON’S REGION

From earlier slides we can restrict to:
|U|+ |V| ≤ |X|+ 1 and X = f (U,V).

It turns out that we need not search over certain functions

1 XOR pattern: there is a k × k sub-matrix such that rows and columns are
permutations in S|X|. For example, X = f (U,V) has

(U/V v1 v2

u1 0 1
u2 1 0

)
2 AND pattern: All entries in a row and all in entries in a column map to

same entry.
Using above results one can estimate Marton’s region for |X| = 4.
Simulations are (as of yet) unable to find an example such that

A(q) ( 1
2
A(q⊗ q).
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SUMMARY

Computing regions in network information theory
Understanding/restricting extremal distributions is the key

Going beyond the traditional representation [Cover] using auxiliary
random variables
Perturbation ideas (calculus of variations)
Representation as concave envelopes

The above computations are useful

To see if the current regions are optimal or not

To establish capacity regions of some classes of channels

THANK YOU
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