Distinguished Lecture | Women in Computing

How Can NLP Help Cure Cancer?

Regina BarzilayProfessorMIT
WHERE:
1017 Dow BuildingMap
SHARE:

Abstract – Cancer inflicts a heavy toll on our society. One out of seven women will be diagnosed with breast cancer during their lifetime, a fraction of them contributing to about 450,000 deaths annually worldwide. Despite billions of dollars invested in cancer research, our understanding of the disease, treatment, and prevention is still limited.

Majority of cancer research today takes place in biology and medicine. Computer science plays a minor supporting role in this process if at all. In this talk, I hope to convince you that NLP as a field has a chance to play a significant role in this battle. Indeed, free-form text remains the primary means by which physicians record their observations and clinical findings. Unfortunately, this rich source of textual information is severely underutilized by predictive models in oncology. Current models rely primarily only on structured data.

In the first part of my talk, I will describe a number of tasks where NLP-based models can make a difference in clinical practice. For example, these include improving models of disease progression, preventing over-treatment, and narrowing down to the cure. This part of the talk draws on active collaborations with oncologists from Massachusetts General Hospital (MGH).

In the second part of the talk, I will push beyond standard tools, introducing new functionalities and avoiding annotation-hungry training paradigms ill-suited for clinical practice. In particular, I will focus on interpretable neural models that provide rationales underlying their predictions, and semi-supervised methods for information extraction.

Biography – Regina Barzilay is a professor in the Department of Electrical Engineering and Computer Science and a member of the Computer Science and Artificial Intelligence Laboratory at the Massachusetts Institute of Technology. Her research interests are in natural language processing. She is a recipient of various awards including of the NSF Career Award, the MIT Technology Review TR-35 Award, Microsoft Faculty Fellowship and several Best Paper Awards at NAACL and ACL. She received her Ph.D. in Computer Science from Columbia University, and spent a year as a postdoc at Cornell University.

Sponsored by

CSE