Theory Seminar

Multi-Key FHE from LWE, Revisited

Sina ShiehianUniversity of Michigan

Traditional fully homomorphic encryption (FHE) schemes only allow computation on data encrypted under a single key. Lopez-Alt, Tromer, and Vaikuntanathan (STOC 2012) proposed the notion of Â&rquo; multi-key FHE, which allows homomorphic computation on ciphertexts encrypted under different keys, and also gave a construction based on a (somewhat nonstandard) assumption related to NTRU. More recently, Clear and McGoldrick (CRYPTO 2015), followed by Mukherjee and Wichs (EUROCRYPT 2016), proposed a multi-key FHE based on learning with errors (LWE). However, unlike the original construction of Lopez-Alt Â&rquo; et al., these later LWE-based schemes have the somewhat undesirable property of being "single-hop" with respect to keys, i.e., all relevant keys must be known at the start of the homomorphic computation, and the output cannot be usefully combined with ciphertexts encrypted under other keys (unless an expensive "bootstrapping" step is performed). In this work we construct two multi-key FHE schemes, based on LWE assumptions, which are multi-hop with respect to keys: the output of a homomorphic computation on ciphertexts encrypted under a set of keys can be used in further homomorphic computation involving additional keys, and so on. Our systems also have smaller ciphertexts than the previous LWE-based ones; indeed, ciphertexts in our second construction are simply GSW ciphertexts with no auxiliary data.

The paper can be accessed at:

Sponsored by