Dissertation Defense

Efficient Algorithms for a Mesh-Connected Computer with Additional Global Bandwidth

Yujie An

This thesis shows that adding additional global bandwidths to a mesh-connected computer can greatly improve the performance. The goal of this project is to design algorithms for mesh-connected computers augmented with limited global bandwidth, so that we can further enhance our understanding of the parallel/serial nature of the problems on evolving parallel architectures. We do this by first solving several problems associated with fundamental data movement, then summarize ways to resolve different situations one may observe in data movement in parallel computing. This can help us to understand whether the problem is easily parallelizable on different parallel models. We give efficient algorithms to solve several fundamental problems, which include sorting, counting, fast Fourier transform, finding a minimum spanning tree, finding a convex hull, etc. We show that adding a small amount of global bandwidth makes a practical design that combines aspects of mesh and fully connected models to achieve the benefits of each. Most of the algorithms are optimal. For future work, we believe that algorithms with peak-power constrains can make our model well adapted to the recent architectures in high performance computing.

Sponsored by

Quentin Stout