Theory Seminar

Fooling Constant-Depth Threshold Circuits

William HozaUT Austin
SHARE:

Abstract: We present the first non-trivial pseudorandom generator (PRG) for linear threshold (LTF) circuits of arbitrary constant depth and super-linear size. This PRG fools circuits with depth d and n^{1 + delta} wires, where delta = exp(-O(d)), using seed length O(n^{1 – delta}) and with error exp(-n^{delta}). This tightly matches the best known lower bounds for this circuit class. As a consequence of our result, all the known hardness for LTF circuits has now effectively been translated into pseudorandomness. This brings the extensive effort in the last decade to construct PRGs and deterministic circuit-analysis algorithms for this class to the point where any subsequent improvement would yield breakthrough lower bounds.

A key ingredient in our construction is a pseudorandom restriction procedure that has tiny failure probability, but simplifies the function to a non-natural “hybrid computational model” that combines decision trees and LTFs. As part of our proof we also construct an “extremely low-error” PRG for the class of functions computable by an arbitrary function of s linear threshold functions that can handle even the extreme setting of parameters s = n/polylog(n) and epsilon = exp(-n/polylog(n)).

Joint work with Pooya Hatami, Avishay Tal, and Roei Tell.

Organizer

Greg Bodwin

Organizer

Euiwoong Lee