AI Seminar

NLP Driven Models for Automatically Generating Survey Articles for Scientific Topics

Rahul Jha

This thesis presents new methods that use natural language processing (NLP) driven models for summarizing research in scientific fields. Given a topic query in the form of a text string, we present methods for finding research articles relevant to the topic as well as summarization algorithms that use lexical and discourse information present in the text of these articles to generate coherent and readable extractive summaries of past research on the topic. In addition to summarizing prior research, good survey articles should also forecast future trends. With this motivation, we present work on forecasting future impact of scientific publications using NLP driven features.

Sponsored by

Professor Dragomir R. Radev